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Abstract

This paper is a proposal to design flow structures with maximal heat transfer rate per unit volume, by shaping each

duct so that it fits optimally on the body of the convective flow. Optimally shaped ducts can be assembled into larger

constructs. Two examples are given. In the first, a heat-generating strip is cooled inside a duct of rectangular cross-

section. The duct geometry has two degrees of freedom, which can be selected so that the fixed duct volume packs a

maximum of heat transfer rate. In the second example, the duct is a tube with isothermal internal surface, and the flow

is sufficiently slow so that boundary layers do not form inside the duct. Once again, the duct aspect ratio can be op-

timized for maximal heat transfer rate density. Further improvements can be sought by endowing the duct geometry

with more degrees of freedom.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. The constructal design method

The traditional approach to the design of convective

flow structures such as heat exchangers and electronics

cooling, starts with the channels and the ducts. Flow

channels and wall features (e.g., fins) are first assumed.

Later, they are connected and assembled into larger

constructs that fill the space allocated to the device. The

flows, which are many and highly diverse, are forced to

reside in regular spaces that have been set aside for fluid

flow and convection.

The traditional approach is so common that we do

not even think of questioning it. The very teaching of

heat transfer begins with assumed �typical� configura-
tions that confine convective flows: flat plates, tubes,

parallel-plates channels, etc.

In this paper, we propose an alternative to this ap-

proach. The reason is the objective that drives most of

the convective design activity, namely, the maximization

of heat transfer rate density. Compact and small-scale

heat exchangers, as well as all the electronics cooling

configurations developed so far, point in the same di-

rection: the installation of more heat transfer rate into

devices the volumes of which are constrained.

This permanent struggle between objective and con-

straints invites us to consider alternatives. In the present

paper, the guide is the method of constructal design [1],

which is the thought that the flow architecture itself is

the product of this struggle, or the means (the mecha-

nism) by which the device achieves its objective under

constraints. In constructal design the flow architecture is

the unknown. The flow system is initially a black box

endowed with objective, constraints and, above all,

freedom. The freedom to morph, to go with the flow, to

shape itself, to rock the boat the least.

Sadi Carnot�s teachings to avoid friction and shocks

(abrupt changes) in the pursuit of thermodynamic ide-

ality (reversibility) are consistent with the constructal

method. The difference is that in constructal design the

finiteness of space, residence times and materials is rec-

ognized as reality. The constraints relegate the flow sys-

tem to a life of thermodynamic imperfection. The system

is destined to rely on flows that overcome resistances.

Streams and resistances together represent irreversibility,

or the degrading of thermodynamic performance at the

global level. Fluid and thermal resistances cannot be
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eliminated. At best, they can be shaped, distributed

and balanced against each other, so that their inte-

grated (global) effect is minimized. The end result of

such morphological changes is the flow architecture of

the system.

Let us reexamine the traditional approach mentioned

in the first paragraph. To force a flow to perform inside

a standard, prescribed geometry is like forcing your foot

into a standard (one-size) shoe. You may be able to

walk, but you will soon think of better alternatives. The

flow, like the foot, has its own ‘‘body’’. For example, the

body of the thermally convective flow near a flat plate

parallel to a stream is the thermal boundary layer re-

gion. This body has a natural shape. Our proposal is

general: start with the body, and build the confining

walls so that they mate with the body as well as possible.

The foot comes before the shoe.

To illustrate this approach, consider the problem of

cooling a heat-generating line (or narrow strip) with a

stream that flows parallel to the strip (Fig. 1, top). The

global objective is to fit this convective flow into the

smallest volume, or to pack the largest heat transfer rate

in a volume of fixed size and variable shape. The natural

body of the convective flow can be anticipated based on

boundary layer theory. As shown in Fig. 1, we expect a

convective region shaped as a body of revolution, which

becomes thicker in the downstream direction.

Next comes the task of shaping the volume so that it

mimics the geometry of the convective body. The ideal

way to proceed is to give the fixed volume V a large

number of degrees of freedom, and to optimize the heat

transfer rate density with respect to each degree. The

simplest version of this approach is to endow the volume

V with a single degree of freedom, so that we still have

access to an infinity of V shapes that could be fitted

around the convective body.

In Fig. 1, it was assumed that V is a cylinder posi-

tioned coaxially with the heat strip, and that the slen-

derness of the cylinder is free to vary. Three competing

designs are shown. When the shape of V is robust, Fig.

1a, a large portion of V is wasted because it is bathed by

fluid that does not ‘‘work’’. The isothermal fluid that is

outside the convective body is useless. In the opposite

extreme, Fig. 1c, the V shape is considerably more

slender than the convective body, and the heat-transfer

fluid is ‘‘overworked’’. Most of the downstream position

of the heat-generating strip is cooled by fluid that has

been used already. The stream warms up as it flows

downstream, and becomes a poorer cooling agent.

The best V shape is in-between, Fig. 1b. An enclosure

that hugs the contour of the convective body promises to

be filled to the maximum with cold fluid that interacts

thermally with the heat source. In this paper, we inves-

tigate this design optimization opportunity numerically.

2. Heating strip inside duct

The first demonstration of the duct-fitting principle is

for the test configuration shown in Fig. 2. A thin heat-

generating strip of width 2D and temperature Tw is bathed
on one side by a single-phase stream of temperature T0.

Nomenclature

A duct cross-sectional area, m2

Be Bejan number based on volume, Eq. (12)

BeL Bejan number based on L, Eq. (21)
D thickness, m

G width, m

H height, m

k thermal conductivity, W/mK

L length, m

Ld downstream flow length, m

Lu upstream flow length, m

P pressure, Pa

Pr Prandtl number, m=a
q total heat transfer, W

q00 heat flux, W/m2K

Q dimensionless heat transfer density, Eq. (16)

R radius, m

R1 radius of computational domain, m

Re Reynolds number, Eq. (31)

T temperature, K

Tw wall temperature, K

T0 inlet temperature, K

u, v, w velocity components, m/s

V duct volume, m3

x, y, z Cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2/s

DP pressure difference, Pa

l viscosity, kg/sm

m kinematic viscosity, m2/s

q density, kg/m3

Subscripts

m maximum

mm maximized twice

opt optimum

w wall

Superscript

(~) dimensionless variables, Eqs. (9), (29) and

(30)
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Fig. 2. Heat-generating strip cooled by a parallel stream, and encased in a duct of fixed volume and variable shape.

Fig. 1. The body of a convective flow, and how to fit a duct around it.
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A related flow geometry was analyzed numerically in [2].

This time the objective is to encase the flow in a duct with

variable shape and fixed volume, such that the volume-

averaged heat transfer rate density is maximized. This

optimum corresponds to the situation sketched in Fig.

1b, where the given volume is filled to the maximum with

flow that participates in the heat transfer process. The

symmetry of the configuration allows us to study only

half of the flow volume, which serves as constraint

V ¼ GHL ð1Þ

The pressure difference that drives the flow, DP , is
specified. The flow is steady and laminar. The equations

for the conservation of mass, momentum and energy are
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where u, v and w are the velocity components in the x, y
and z directions, and z is aligned with the flow direction.

The fluid properties ða, m, qÞ are defined in the No-

menclature, and are assumed constant. The local pres-

sure and temperature are P and T .
First, Eqs. (3)–(5) can be simplified by assuming that

the effect of inertia is negligible. This is equivalent to the

assumption that the fluid Prandtl number is greater than

1. In this limit the flow is hydrodynamically fully de-

veloped, and the momentum equations reduce to a single

equation

o2w
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�
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�
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lL
ð7Þ

The energy equation becomes

w
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�
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The boundary conditions are w ¼ 0 on all the wall sur-

faces, zero shear on the plane of symmetry (x ¼ 0),

T ¼ Tw on the heat-generating strip, T ¼ T0 on the inlet

plane, and zero heat flux on the wall surfaces other than

the heat generating strip. As the boundary condition for

temperature on the exit plane (z ¼ L) we use the para-

bolic condition oT=oz ¼ 0.

Eqs. (7) and (8) are nondimensionalized by using V 1=3

as length scale and Tw � T0 as temperature scale,

ð~xx; ~yy;~zz; eHH ; eGG; eLL; eDDÞ ¼ x; y; z;H ;G; L;D
V 1=3

� �
;

eTT ¼ T � T0
Tw � T0

; ~ww ¼ wl
DPV 1=3

ð9Þ

Eqs. (7) and (8) become

o2 ~ww
o~xx2

þ o2 ~ww
o~yy2

¼ 1eLL ð10Þ

~wwBe
oeTT
o~zz

¼ o2T
ox2

þ o2eTT
o~yy2

þ o2eTT
o~zz2

ð11Þ

where

Be ¼ DPV 2=3

al
ð12Þ

The dimensionless group Be is the dimensionless pres-

sure drop that Bhattacharjee and Grosshandler [3] and

Petrescu [4] named the Bejan number. This number is

fixed because DP and V are fixed. The volume constraint

(1) becomes

eHH eGGeLL ¼ 1 ð13Þ

The temperature boundary conditions are eTT ¼ 1 on the

strip, oeTT =o~nn ¼ 0 on the other wall surfaces, eTT ¼ 0 on

the plane of the inlet, and oeTT =o~zz ¼ 0 on the plane of the

outlet.

The global quantity that measures the goodness of

the duct design is the heat transfer rate density, i.e., the

heat transfer rate that occurs in the entire volume. The

total heat transfer rate from the strip to the fluid is

q ¼
Z L

0

Z D

0

q00 dxdz ð14Þ

where q00 is the local heat flux along the D-wide surface

of the strip,

q00 ¼ k
�
� oT

oy

�
y¼0

ð15Þ

The heat transfer rate density q=V has the dimensionless

counterpart

Q ¼ q=V
kðTw � T0Þ=V 2=3

¼
Z eLL
0

Z eDD
0

 
� oeTT

o~yy

!
~yy¼0

d~xxd~zz ð16Þ

3. Numerical optimization of duct geometry

Eqs. (10) and (11) were solved based on the finite

element method. First, the velocity distribution ~wwð~xx; ~yyÞ
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was obtained by solving Eq. (10). Next, the temperature

field eTT ð~xx; ~yy;~zzÞ followed directly from Eq. (11). The finite

element code [5] was selected because in order to opti-

mize the geometry of the flow enclosure it was necessary

to simulate the flow in a very large number of configu-

rations. The grids were nonuniform in the ~xx, ~yy and ~zz
directions, and changed from one configuration to the

next. The nodes were denser in the vicinity of the strip,

where higher temperature gradients were expected. The

total number of nodes was in the range 9600–108,000.

The total number of elements varied from 10,773 to

139,499. The meshes that were used were tested so that

the doubling of the number of nodes in the ~xx, ~yy and ~zz
directions induced changes of less than 2% in Q. Table 1
shows one example of how grid independence was

achieved. In this example, i indicates the grid, and in-

creases downward through the table.

The strip half-width was set at a value in the range

0:00256 eDD6 0:02. The pressure drop number was as-

signed a value in the range 16Be6 106. The optimiza-

tion of the shape of the duct volume has two degrees of

freedom, eLL and the aspect ratio eHH =eGG, or H=G. These
were optimized together, in two nested loops. First, in

the inner loop we fixed eLL and optimized H=G, as shown
in Fig. 3. The results of this first step are the aspect ratio

ðH=GÞopt and the maximized heat transfer rate density

Qm. In the outer loop, we maximized Qm by varying eLL,
as shown in Fig. 4.

The results of this procedure are the optimized geo-

metry, eLLopt and ðH=GÞopt, and the maximal heat transfer

rate density, Qmm, which is the largest of the Qm values.

These results are functions of the assumed parameters,

Be and eDD. Fig. 5 was generated by repeating the pro-

cedure of Figs. 3 and 4 for several values of Be and eDD.

The strip width has almost no effect on the optimized

geometry, because D is small relative to the length scale

of the flow enclosure, V 1=3. The maximized heat transfer

rate density Qmm increases as the strip becomes wider.

The effect of the pressure drop number is more in-

teresting. Two patterns of behavior emerge. When

Be > 102, Qmm and eLLopt increase with Be, and ðH=GÞopt is
practically constant, ðH=GÞopt ffi 1:33. The optimal cross-

sectional shape is almost square. In the large-Be limit,

and if eDD ¼ 0:02, the remaining results vary as

eLLopt ffi 0:5Be1=4 ð17Þ

Qmm ffi 0:194Be1=4 ð18Þ

In view of ðH=GÞopt ffi 1:33 and the volume constraint

(13), the optimized length shown in Eq. (17) is equiva-

lent to an optimal slenderness of the longitudinal profile,

L
H

� �
opt

ffi 0:31Be3=8 ð19Þ

Furthermore, by eliminating V between Eqs. (17) and

(19), the slenderness of the flow enclosure becomes

L
H

� �
opt

ffi 0:43Be1=4L ð20Þ

where BeL is the Bejan number based on L [6],

Table 1

Grid refinement test for eLL ¼ 9:5, H=G ¼ 1:3 and Be ¼ 105

Nodes Elements Q ðQi � Qiþ1Þ=Qij j
7000 8123 2.5399 –

12,375 14,192 2.5838 0.0173

24,750 28,292 2.5957 0.0046

49,500 56,492 2.60374 0.0031

Fig. 3. The optimization of the duct cross-sectional shape when

the duct length is fixed (eLL ¼ 102, eDD ¼ 10�2, Be ¼ 104).

Fig. 4. Optimization of results of the type shown in Fig. 3,

repeated for many values of eLL.
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BeL ¼
DPL2

al
ð21Þ

Note the similarities between the BeL and Be definitions,
Eqs. (21) and (12), and that the length scale used in Be is
V 1=3. Eq. (17) is the same as writing

Be1=2L ffi 0:5Be3=4 ð22Þ

Note further that Eq. (20) has the same form as the

relation obtained for the optimal slenderness of spacings

in large stacks of parallel plates with convective heat

transfer and fixed volume and longitudinal pressure

drop [6]. Additional examples of optimized spacings are

reviewed in [7]. When the flow is laminar (PrJ 0:5) and
driven by buoyancy through a stack with many vertical

channels, the optimal spacing (H ) is given by a relation

similar to Eq. (20), where L is the height of the stack,

and BeL is replaced by the Rayleigh number based on

height [8–10]. More examples of optimal internal spac-

ings for structures with many vertical channels cooled by

natural convection are given in [7].

When Be < 102, the eLLopt and Qmm curves level off,

and ðH=GÞopt drops to almost half of its original value.

This behavior requires closer scrutiny, because when Be
decreases the flow slows down and the thermal bound-

ary layers become thicker. The convective body formed

around the heating strip becomes less slender, and, be-

cause the volume is constrained, the ðL=HÞopt ratio de-

creases. This ratio has to remain greater than 1 in an

order of magnitude sense, say

L
H

� �
opt

> 10 ð23Þ

so that the model adopted in Fig. 2 is adequate. By this

we mean that the volume must be sufficiently slender so

that the Pr 
 1 flow can attain full development, and the

upstream and downstream flow regions (the entrance

and exit effects) can be neglected in the calculation of the

overall DP . In sum, by combining Eqs. (20)–(23) we find

that the slenderness assumption (23) is the same as

Be > 104 ð24Þ

This condition suggests that the small-Be behavior

shown in Fig. 5 may be due to the breakdown of the

slender channel model. This is why in the next section we

built a model more suitable for volume shapes and slow

flows that violate the inequality (23).

4. Round tube with upstream and downstream flow

To account for the flow upstream and downstream of

a duct that is not necessarily slender, we chose the short

tube configuration shown in Fig. 6. The flow, pressure

and temperature fields ðu, v, P , T Þ depend on the radial

and longitudinal positions ðr; xÞ. These variables are

defined in Fig. 6. The tube length and radius are L and R.
The computational domain is considerably larger than

the tube volume: it has the radius R1 and the length

Lu þ Lþ Ld, where Lu and Ld are the lengths of the up-

stream and downstream flow regions. The dimensions

R1, Lu and Ld are chosen to be sufficiently larger than R
and L, so that their magnitudes do not affect the calcu-

lated pressure drop (DP ) and total heat transfer rate

associated with the tube. To preserve cylindrical sym-

metry, the tube wall is assumed isothermal (Tw).
The equations for the conservation of mass, mo-

mentum and energy in steady flow are

1
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þ ~uu
oeTT
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RePr
1

~rr
o
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~rr
oeTT
o~rr

 !"
þ o2eTT

o~xx2

#
ð28Þ

The dimensionless variables are defined based on the

length scale V 1=3, where V is the tube volume, and the

pressure difference between the inlet and exit planes of

the computational domains (DP ),

ð~rr;~xx; eRR; eRR1; eLL; eLLu; eLLdÞ ¼ ðr; x;R;R1; L; Lu; LdÞ=V 1=3

ð29Þ

ð~uu; ~vvÞ ¼ ðu; vÞ
ðDP=qÞ1=2

ePP ¼ P � Pd
DP

ð30Þ

The temperature eTT is defined as in Eq. (9). The pressure

on the exit plane is Pd. The Reynolds number is defined by

Fig. 5. The effect of pressure drop number and strip width on

the optimized duct that houses the convective flow of Fig. 2.
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Re ¼ V 1=3

m
DP
q

� �1=2

¼ Be
Pr

� �1=2

ð31Þ

The boundary conditions for fluid flow are: ePP ¼ 1

and ~vv ¼ 0 on the left-most plane (~xx ¼ 0); ePP ¼ 0 on the

right-most plane ð~xx ¼ eLLu þ eLL þ eLLdÞ; no slip and no flow

penetration on all the solid surfaces; and free slip and no

flow penetration at ~rr ¼ 0 and ~rr ¼ eRR1.

The thermal boundary conditions are: eTT ¼ 1 on the

internal surface of the tube; eTT ¼ 0 on the ~xx ¼ 0 plane;

adiabatic surfaces on the remaining portions of the

boundary of the computational domain.

The quantity that describes the global performance

of the flow configuration is the density of heat transfer,

defined in dimensionless form in Eq. (16). The tube

volume is fixed, peRR2eLL ¼ 1, while the volume shape may

vary. The variable shape is represented by eRR, or eLL.
Eqs. (25)–(28) were solved using a finite elements

code [7]. The grid was nonuniform in ~xx and ~rr, with more

nodes on the tube surface and in the vicinity of the tube

entrance and exit. Tests similar to Table 1 indicated that

the number of nodes required to achieve grid indepen-

dence varied from 193 to 217 nodes in the ~xx direction,

and from 129 to 147 nodes in the ~rr direction. With such

grids, the numerical solution showed relative changes of

less than 2% when the number of grid points was dou-

bled in both directions.

The outer dimensions of the computational domain

ðeLLu, eLLd, eRR1Þ were selected based on the tests docu-

mented in Tables 2 and 3. These lengths were made

large enough so that the relative changes in the heat

transfer rate density became smaller than 1%. The outer

dimensions selected and used to generate Fig. 7 wereeLLu ¼ 20, eLLd ¼ 20 and eRR1 ¼ 20þ eRR. For Fig. 8, the

outer dimension varies and depends on Be; eLLu is equal

to eLLd and varies from 12 to 22; eRR1 varies from 14 to

24.3.

The tube geometry was optimized by simulating the

flow and temperature fields for a large number of tube

shapes (eRR), calculating the heat transfer rate density Q
for each shape, and selecting the shape for which Q is

maximal. Fig. 7 confirms that Q has a maximum with

respect to the shape parameter eLL when the tube volume

Fig. 6. Computational domain for flow through a round tube.

Table 2

Test for determining the outer dimensions of the computational

domain (eRR ¼ 2, Be ¼ 0:01)eLLu Ld
eRR1 ¼ eLLu þ eRR Q ðQi � Qiþ1Þ=Qij j

2 2 4 4.310311 –

4 4 6 3.502901 0.18732

6 6 8 3.203732 0.085406

8 8 10 3.044779 0.049615

10 10 12 2.943181 0.03337

12 12 14 2.870837 0.02458

14 14 16 2.815622 0.01923

16 16 18 2.771426 0.01570

18 18 20 2.734814 0.01321

20 20 22 2.703698 0.01138

22 22 24 2.676722 0.00998

24 24 26 2.652967 0.00887
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is fixed. This example is for Be ¼ 0:1, which is much

lower than the Be range explored in Sections 2 and 3.

The optimization illustrated in Fig. 7 was repeated

for several Be values in the range 10�2–104. The maxi-

mized heat transfer density (Qm) and optimal tube length

½eLLopt ¼ ðpeRR2
optÞ

�1� are reported in Fig. 8. This figure can

be compared qualitatively with Fig. 5, which was for a

flow model for slender channels, or Be 
 1. Note that

the Qm and eLLopt curves of Fig. 8 correspond to the Qmm

and eLLopt curves of Fig. 5.

The present model is applicable in the limit of short

tubes, or BeK 1. Fig. 8 confirms the features of Fig. 5 at

Be 
 1. As Be decreases, the maximized heat transfer

density becomes less sensitive to Be. The optimal tube

length shows a similar decrease in sensitivity, as Be
drops below 1. The new feature is the slight dip in theeLLoptðBeÞ curve, which occurs when Be is of order 1.

5. Concluding remarks

In this paper we provided an illustration of the

method of fitting the duct to the natural shape of the

convective flow. In the configuration chosen in Fig. 1

the duct had two degrees of freedom – the aspect ratio of

the cross-section, and the slenderness of the longitudinal

profile. In the round tube configuration of Fig. 6, the

only degree of freedom was the longitudinal profile.

These simple examples showed how the duct shape can

be fitted to the convective body so that the volumetric

density of heat transfer is maximized.

The numerical work of Section 4 made an additional

contribution: the optimization of the duct profile in the

slow flow limit, where the duct slenderness assumption

fails. The existing studies of optimally spaced stacks of

parallel plates are all based on the assumption that

boundary layers and duct profiles are slender. The small-

Be trends reported in Fig. 8 are new.

Better designs can be achieved by endowing the duct

geometry with more degrees of freedom. In principle,

this means that in addition to the optimized geometric

ratios documented in this paper, a duct that houses a

boundary layer flow should have a certain variation of

cross-section in the longitudinal direction, most likely

with wider cross-sections near the exit. Ultimately, the

volume with maximal heat transfer density will be

packed nonuniformly with flow passages and heat

transfer surfaces, for example, as in dendritic constructal

heat exchangers [11]. This is particularly relevant to the

design of electronic packages and packed beds for en-

ergy storage and retrieval [12].
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Fig. 8. The effect of pressure drop number on the optimized

tube for the flow configuration simulated in accordance with

Fig. 6.

Fig. 7. The maximization of heat transfer rate density in the

configuration of Fig. 6.

Table 3

Test for determining the outer dimensions of the computation

domain (eRR ¼ 2, and Be ¼ 100)eLLu Ld
eRR1 ¼ eLLu þ eRR Q ðQi � Qiþ1Þ=Qij j

2 2 4 6.583452 –

4 4 6 5.973845 0.09260

6 6 8 5.726921 0.041334

8 8 10 5.576024 0.02635

10 10 12 5.467649 0.01944

12 12 14 5.383362 0.015415

14 14 16 5.314645 0.012765

16 16 18 5.256783 0.01089

18 18 20 5.206920 0.009485

20 20 22 5.163183 0.00840
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